
Especificaciones técnicas

Válvulas de accionamiento termostático del agua de refrigeración

Modelo AVTA

Indice		Página
	Introducción	3
	AVTA para fluido neutros	4
	Pedidos	
	Dimensiones y pesos	
	AVTA DZR para fluidos ligeramente agresivos	7
	Pedidos	8
	Dimensiones	9
	AVTA SS para fluidos agresivos	10
	Pedidos	11
	Dimensiones	11
	Instalación	12
	Instalación del sensor	
	Repuestos y accesorios	
	Tamaño	
	Diagramas	15

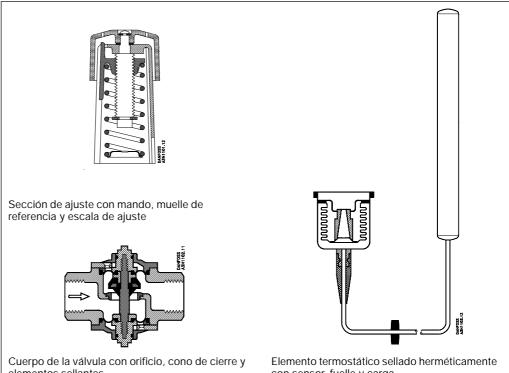
Introducción

Las válvulas de accionamiento termostático se usan para la regulación infinita, proporcional de la cantidad de caudal, dependiendo del ajuste y de la temperatura del sensor.

El rango Danfoss de las válvulas termostáticas comprende una serie de productos industriales para la regulación tanto de la refrigeración como del calentamiento. Las válvulas funcionan por sí solas, es decir, no necesitan la alimentación de energía auxiliar como electricidad o aire comprimido.

Como la cantidad de caudal de las válvulas

coincide constantemente con la que se demanda, éstas son especialmente recomendables para regular la temperatura. La temperatura requerida se mantiene constante sin el consumo excesivo de:


- agua refrigerante en sistemas de refrigeración,
- agua caliente o vapor en sistemas de calentamiento Por lo tanto, el coste de funcionamiento es siempre razonable.

Para mayor información sobre las válvulas de accionamiento termostático para la regulación del calentamiento (AVTB), póngase en contacto con Danfoss.

Datos técnicos

General

Las válvulas termostáticas disponen de tres elementos principales:

elementos sellantes.

con sensor, fuelle y carga.

Función

Una vez que se colocan los tres elementos juntos, se instala la válvula y el sensor se coloca en el punto donde se va a regular la temperatura, la secuencia de la función continúa de la siguiente manera:

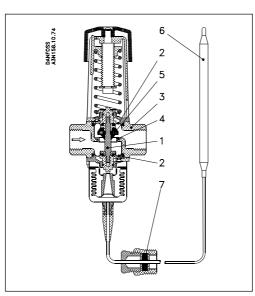
- 1. En el sensor se crea una presión dependiente de la temperatura - presión de vapor de la carga
- 2. Esta presión es traspasada a la válvula mediante el tubo capilar y el fuelle y actúa como una fuerza de apertura o cierre.
- 3. El mando de la sección de ajuste y el muelle ejercen una fuerza que actúa contra el fuelle.

- 4. Cuando se crea un equilibrio entre las dos fuerzas opuestas, el vástago de la válvula se mantiene en su posición.
- 5. Si se cambia la temperatura del sensor o el ajuste, el punto de equilibrio se desplaza y el vástago de la válvula se mueve hasta que se restablece el equilibrio o la válvula está completamente abierta o cerrada.
- 6. El cambio de temperatura del sensor es aproximadamente proporcional al cambio de la cantidad de caudal.

Los dibujos muestran una válvula para agua de refrigeración AVTA, pero el principio de funcionamiento se aplica a todos los modelos de válvula termostática.

Aplicación

AVTA para fluido neutros


Las válvulas para agua refrigerante AVTA con funcionamiento independiente se utilizan asiduamente para regular la temperatura de un gran número de diferentes máquinas e instalaciones donde se requiera refrigeración. AVTA siempre se abre para admitir caudal a la temperatura ascendente del sensor. La válvula se puede instalar bien en la línea del caudal del agua de refrigeración o en la de retorno.

Aplicaciones comunes:

- Máquinas de moldeo por inyección
- Compresores
- Bombas de vacío
- Máquinas de limpieza en seco
- Planta de destilación
- Máquinas de impresión
- Sistemas hidráulicos
- Rodillos/molinos

AVTA con conexión NPT, póngase en contacto con Danfoss para la hoja de datos norteamericana.

Especificaciones y resumen del producto

- Se abre con la temperatura ascendente del sensor
- Temperatura del fluido –25 → + 130°C
- Presión diferencial 0 → 10 bar
- Máx. presión de trabajo 16 bar
- Máx. presión de prueba 25 bar
- Máx. presión del sensor 25 bar
- Las válvulas están liberadas de presión, es decir, la presión diferencial no afecta el grado de apertura Δp (caída de presión).
- El rango de regulación está definido por el punto en que la válvula empieza a abrirse.

Las válvulas AVTA están disponibles con tres modelos diferentes de carga (véanse las páginas 4 y 5):

- A: Carga de adsorción
- B: Carga de masa
- C: Carga universal

Materiales - piezas en contacto con el fluido, AVTA

Código	Descripción	Material	
1	Vástago	Latón	N° 2.0401
2	Diafragmas	Goma – etileno – propileno	(EPDM)
3	Cuerpo de la válvula y otras piezas de metal	Latón forjado	N° 2.0402
4	Cono de la válvula	Goma nitrilo (NBR)	
5	Asiento de la válvula	Acero inoxidable	N° 1.4305 / AISI 303
6	Sensor	Cobre	N° 2.0090
7	Empaquetadura del tubo capilar	Goma nitrilo (NBR) Latón	N° 2.0321 / 2.0401

Pedidos: AVTA con carga de adsorción La carga está constituida de carbón activo y ${\rm CO_2}$ que se adsorbe a la temperatura descendente del sensor y produce cambios de presión en el elemento.

Características especiales

• Amplio rango de regulación

- Se puede instalar en cualquier posición en lo que se refiere a orientación y temperatura
- Soporta hasta una temperatura de sensor de +130°C
- Dimensiones reducidas del sensor Ø 9,5 × 160 mm
- Máx. presión del sensor 25 bar

Conexión	Rango de regulación	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud tubo capilar [m]	Modelo	Código 1)
G 3/8		1,4		AVTA 10	003N1144
G 1/2	+10 → +80°C	1,9	2.2	AVTA 15	003N0107
G 3/ ₄	1+10 → +60 C	3,4	2,3	AVTA 20	003N0108
G 1		5,5		AVTA 25	003N0109

¹⁾ El código incluye la válvula completa junto con la empaquetadura del tubo capilar.

Sensores de inmersión, véase "Repuestos y accesorios", en la página 13.

Pedidos: AVTA con carga universal

La carga es líquido o gas y la superficie del líquido (punto de regulación) está siempre dentro del sensor. El tipo de fluido de carga utilizado depende del rango de temperatura.

Características especiales

- Dimensiones del sensor Ø 18 × 210 mm
- El sensor puede estar más frío o más caliente que la válvula durante la instalación
- Los sensores deben estar orientados según se muestra en la figura de la página 12

5

• Máx. presión del sensor 25 bar

Rango de regulación 0 →+30°C, máx. temperatura del sensor +57°C

Conexión	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud del tubo capilar	Modelo	Código 1)
G ³ / ₈	1,4		AVTA 10	003N1132
G 1/2	1,9	2	AVTA 15	003N2132
G 3/4	3,4	2 m	AVTA 20	003N3132
G 1	5,5		AVTA 25	003N4132


¹⁾ El código incluye la válvula completa junto con la empaquetadura del tubo capilar.

Rango de regulación 25 \rightarrow +65°C, máx. temperatura del sensor +90°C

Conexión	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud del tubo capilar	Modelo	Código 1)	
G 3/8	1,4	2 m	AVTA 10	003N1162	
G 1/2	1,9	2 111	AVTA 15	003N2162	
G 7 ₂	2 m (revestido)	2 m (revestido)	AVIA 15	003N0041	
	3,4	2 m		003N3162	
G 3/4		3,4	5 m	AVTA 20	003N3165
		2 m (revestido)		003N0031	
		2 m		003N4162	
G 1	5,5	2 m (revestido) 5 m	AVTA 25	003N0032	
				003N4165	

¹⁾ El código incluye la válvula completa junto con la empaquetadura del tubo capilar.

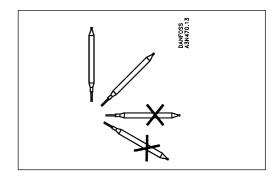
Rango de regulación $+50 \rightarrow +90$ °C, máx. temperatura del sensor +125°C

Conexión	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud del tubo capilar [m]	Modelo	Código 1)
G 3/8	1,4		AVTA 10	003N1182
G 1/2	1,9	2	AVTA 15	003N2182
G 3/4	3,4	2	AVTA 20	003N3182
G 1	E E		AVTA 25	003N4182
6	5,5	3	AVIA 25	003N4183 ²⁾

¹⁾ El código incluye la válvula completa junto con la empaquetadura del tubo capilar.

Sensores de inmersión, véase "Repuestos y accesorios", en la página 13.

²⁾ El cuerpo de la válvula cuenta con un taladro de desvío de Ø 2 mm.


Pedidos: AVTA con carga de masa

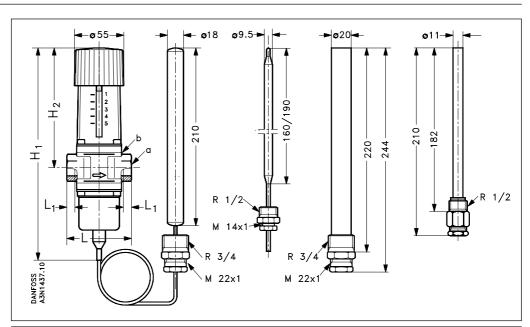
La carga es líquido o gas. Debido a las condiciones volumétricas, la superficie del líquido (punto de regulación) puede estar en el sensor o el fuelle, dependiendo de las condiciones de temperatura.

Características especiales

- Dimensiones reducidas del sensor Ø 9,5 × 190 mm
- Constante de tiempo corta
- El sensor debe estar más caliente que la válvula durante su instalación
- Máx. presión del sensor 25 bar

Rango de regulación $0 \rightarrow +30^{\circ}\text{C}$ Máx. temperatura del sensor +57 $^{\circ}\text{C}$

Conexión	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud del tubo capilar [m]	Modelo	Código 1)
G 1/2	1,9	2	AVTA 15	003N0042
G 3/4	3,4	2	AVTA 20	003N0043


 $^{^{1)}}$ El código incluye la válvula completa junto con la empaquetadura del tubo capilar.

Rango de regulación $+25 \rightarrow +65$ °C Máx. temperatura del sensor +90°C

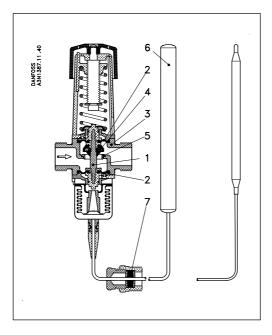
Conexión	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud del tubo capilar [m]	Modelo	Código 1)
		2		003N0045
G ¹ / ₂	1,9	2 (revestido)	AVTA 15	003N0299
		5		003N0034
G ³ / ₄	3,4	2	AVTA 20	003N0046
G 1	5,5	2	AVTA 25	003N0047

¹⁾ El código incluye la válvula completa junto con la empaquetadura del tubo capilar.

Dimensiones y pesos AVTA

Modelo	H ₁	H ₂	L	L ₁	а	b	Peso
		[mm]	[mm]	[mm]	[mm]		[mm] [kg]
AVTA 10	240	133	72	14	G 3/8	○27	1,45
AVTA 15	240	133	72	14	G 1/2	○27	1,45
AVTA 20	240	133	90	16	G 3/ ₄	◯32	1,50
AVTA 25	240	138	95	19	G 1	○41	1,65

Aplicación


AVTA DZR para fluidos ligeramente agresivos

Una válvula de latón resistente a la descincación significa que se puede utilizar con fluidos neutros y ligeramente agresivos. Las roscas externas facilitan la instalación y sustitución de la válvula.

Estadio de presión PN 16; máx. +130°C

Las válvulas AVTA DZR están disponibles con dos tipos diferentes de carga: Carga de adsorción y carga universal. AVTA DZR también está disponible con carga de masa (póngase en contacto con Danfoss).

Especificaciones y resumen del producto

- Se abre con la temperatura ascendente del sensor
- Temperatura del fluido -25 → +130°C
- Presión diferencial $0 \rightarrow 10$ bar
- Máx. presión de prueba 25 bar
- Máx. presión del sensor 25 bar
- Las válvulas están liberadas de presión, es decir, la presión diferencial no afecta al grado de apertura Δp (caída de presión).

Materiales - piezas en contacto con el fluido

Código	Descripción	Material
1	Vástago	Latón resistente a la descincación CuZn36Pb2As / BS2874 / CZ132
2	Diafragma	Goma - etileno - propileno (EPDM)
3	Cuerpo de la válvula	Latón resistente a la descincación CuZn36Pb2As / BS2874 / CZ132
4	Cono de la válvula	Goma nitrilo (NBR)
5	Asiento de la válvula	Acero inoxidable nº 1.4305 / AISI 303
6	Sensor	Cobre nº 2.0090
7	Empaquetadura del tubo capilar	Goma nitrilo (NBR) Latón nº 2.0321 / 2.0401

Pedidos AVTA DZR con carga de adsorción

Opción: Contactar con Danfoss La carga está constituida de carbón activo y ${\rm CO_2}$ que se adsorbe a la temperatura descendente del sensor y produce cambios de presión en el elemento.

Características especiales

- Amplio rango de regulación
- Soporta hasta una temperatura de sensor de +130°C
- Se puede instalar en cualquier posición en lo que se refiere a orientación y temperatura
- Dimensiones reducidas del sensor -Ø 9,5 × 160 mm
- Máx. presión del sensor 25 bar

Conexión	Rango de regulación [°C]	Valor k _ν [m³/h] a Δp = 1 bar)	Longitud tubo capilar [m]	Modelo	Código ¹⁾
G ³ / ₄ A		1,9		AVTA 15	Opción
G 1 A	10 → 80	3,4	2,3	AVTA 20	Opción
G 1 ¹ / ₄ A		5,5		AVTA 25	Opción

¹⁾ El código incluye la válvula completa junto con la empaguetadura del tubo capilar.

Sensores de inmersión, véase "Repuestos y accesorios", en la página 13.

Pedidos AVTA DZR con carga universal La carga es líquido o gas y la superficie del líquido (punto de regulación) está siempre dentro del sensor. El tipo de fluido de carga utilizado depende del rango de temperatura.

Características especiales

- Dimensiones del sensor Ø 18 x 210 mm
- El sensor puede estar más frío o más caliente que la válvula durante la instalación
- Los sensores deben estar orientados según se muestra en la figura de la página 12
- Máx. presión del sensor 25 bar

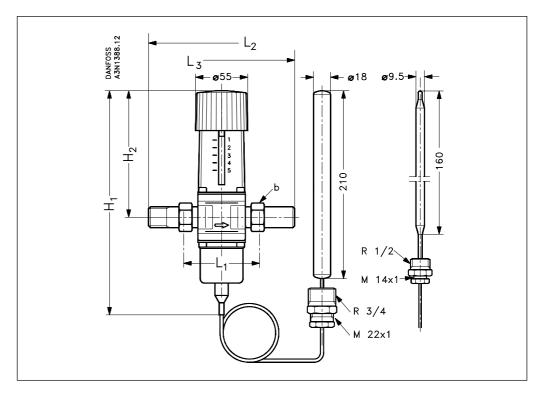
Opción: Contactar con Danfoss

Rango de regulación $0 \rightarrow +30$ °C Máx. temperatura del sensor +57°C

Conexión	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud del tubo capilar [m]	Modelo	Código 1)
G ³ / ₄ A	1,9		AVTA 15	Opción
G 1 A	3,4	2	AVTA 20	Opción
G 1 ¹ / ₄ A	5,5		AVTA 25	Opción

Rango de regulación $+25 \rightarrow +65$ °C Máx. temperatura del sensor +90°C

Conexión	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud del tubo capilar [m]	Modelo	Código 1)
G 3/ ₄ A	1,9		AVTA 15	Opción
G 1 A	3,4	2	AVTA 20	Opción
G 1 ¹ / ₄ A	5,5		AVTA 25	Opción


Rango de regulación $+50 \rightarrow +90^{\circ}$ C Máx. temperatura del sensor $+125^{\circ}$ C

Conexión	Valor k_v (m ³ /h a $\Delta p = 1$ bar)	Longitud del tubo capilar [m]	Modelo	Código 1)
G 3/ ₄ A	1,9		AVTA 15	Opción
G 1 A	3,4	2	AVTA 20	Opción
G 1 ¹ / ₄ A	5,5		AVTA 25	Opción

¹⁾ El código incluye la válvula completa junto con la empaquetadura del tubo capilar.

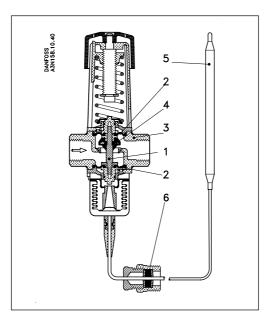
Dimensiones AVTA DZR

Modelo	H ₁	H ₂	L ₁ (estándar)	L ₂ Con. roscada	L₃ Con. soldadura	b ISO 228/1
	[mm]	[mm]	[mm]	[mm]	[mm]	
AVTA 15	217	133	75	141	149	G 3/ ₄ A
AVTA 20	217	133	80	152	164	G1A
AVTA 25	227	138	83	167	167	G 1 ¹ / ₄ A

9

Aplicación

AVTA SS para fluidos agresivos


Un cuerpo de la válvula de acero inoxidable significa que la válvula se puede utilizar con fluidos agresivos en aplicaciones del sector naval y de industria química.

Estadio de presión PN 16; máx. +130°C Para fluidos extremadamente agresivos, se puede suministrar una válvula de titanio (póngase en contacto con Danfoss).

Las válvulas AVTA SS disponen de una carga de adsorción como estándar.

AVTA SS también está disponible con carga de masa o carga universal (póngase en contacto con Danfoss).

Especificaciones y resumen del producto

- Se abre con la temperatura ascendente del sensor
- Temperatura del fluido -25 \rightarrow +130°C
- Presión diferencial 0 → 10 bar
- Máx. presión de prueba 25 bar
- Máx. presión del sensor 25 bar
- Las válvulas están liberadas de presión, es decir, la presión diferencial no afecta al grado de apertura Δp (caída de presión).

Materiales - piezas en contacto con el fluido

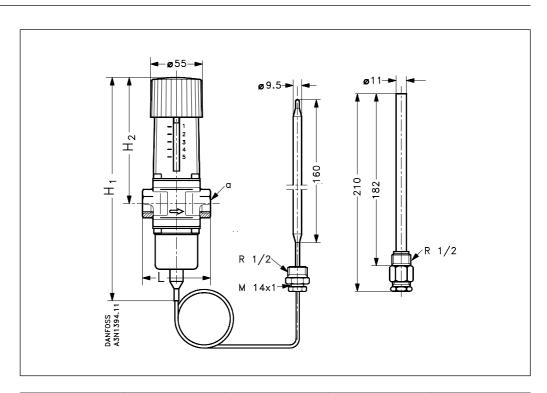
Código	Descripción	Material
1	Vástago	Acero inoxidable nº1.4539 (EN10088); UNS N 08904
2	Diafragmas	Goma – etileno – propileno (EPDM)
3	Cuerpo de la válvula	Acero inoxidable, nº 1.4581 (EN10214-4);AISI 318
4	Cono de la válvula	Goma nitrilo (NBR)
5	Sensor	Cobre (DIN 1787) nº 2.0090
6	Empaquetadura del tubo capilar	Goma nitrilo (NBR), latón (DIN 17660) nº 2.0321 y nº 2.0401

10 DKACV.PD.500.A4.05 © Danfoss A/S 08-2002

Pedidos: AVTA SS con carga de adsorción

La carga está constituida de carbón activo y CO₂ que se adsorbe a la temperatura descendente del sensor y produce cambios de presión en el elemento.

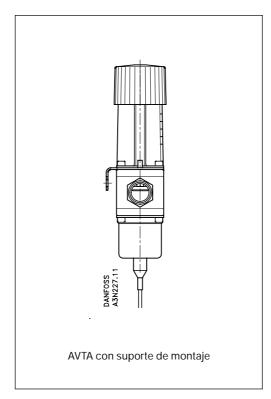
Características especiales


- Amplio rango de regulación
 Se puede instalar en cualquier posición en lo que se refiere a orientación y temperatura
- Soporta hasta una temperatura de sensor de +130°C
- Dimensiones reducidas del sensor - \emptyset 9,5 \times 160 mm
- Máx. presión del sensor 25 bar

Conexión	Rango de regulación	Valor k _ν [m³/h] a Δp = 1 bar)	Longitud tubo capilar [m]	Modelo	Código ¹)
G ½		1,9		AVTA 15	003N2150
G 3/ ₄	+10 → +80°C	3,4	2,3	AVTA 20	003N3150
G 1		5,5		AVTA 25	003N4150

¹⁾ El código incluye la válvula completa junto con la empaquetadura del tubo capilar.

Sensores de inmersión, véase "Repuestos y accesorios", en la página 13


Dimensiones AVTA SS

Modelo	H ₁ [mm]	H ₂ [mm]	L [mm]	a ISO 228/1
AVTA 15	240	133	72	G ½
AVTA 20	240	133	90	G 3/ ₄
AVTA 25	250	138	95	G 1

Instalación

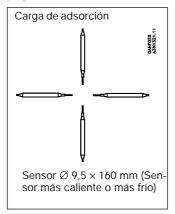
Las válvulas se pueden instalar en cualquier posición. La flecha en el cuerpo de la válvula indica la dirección del caudal. Las válvulas AVTA están señaladas de tal manera que las letras RA se pueden leer directamente cuando la válvula se sostiene como se muestra en la figura. Se recomienda la instalación de un filtro FV delante de la válvula, véase hoja de datos

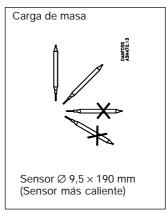
Tubo capilar

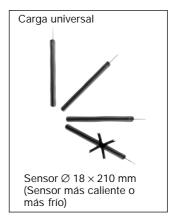
separada DKACV.PD.600.B.

Instale el tubo capilar sin que aparezcan ángulos agudos. Alivie el tubo capilar en la parte final. Es importante realizar el alivio donde pueda darse vibración.

Nota

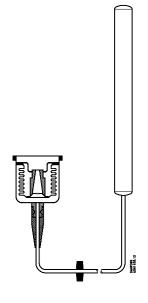

Cuando se utiliza AVTA, el sensor debe poder reaccionar a las variaciones de temperatura del agua refrigerante al comienzo del sistema. Conviene utilizar una línea de desvío con una válvula de cierre para asegurar que el caudal llegue al sensor durante el arranque.


Si se utiliza un soporte de montaje, véase "Repuestos y accesorios" en la página 13. Conviene colocarlo siempre entre el cuerpo de la válvula y la sección de ajuste (véase dibujo).


Instalación del sensor

Si se instala un sensor de inmersión, se recomienda el uso de compuestos termoconductivos. Esto reducirá el tiempo de reacción. Ver "Repuestos y accesorios", página 13.

Instale siempre una válvula AVTA con un sensor pequeño (\varnothing 9.5 \times 190 mm) en la línea del caudal donde el líquido regulado es más frio ("sensor más caliente").



Repuestos y accesorios

Elementos de servicio para AVTA

	Rango de temperatura [°C]	Longitud tubo capilar [m]	Código
Carga de adsorción - sensor Ø 9,5 × 160 mm	+10 → +80	2,3	003N0278
	0 → +30	2	003N0075
	0 → +30	5	003N0077
		2	003N0078
Carga universal - sensor Ø 18 × 210 mm	+25 → +65	5	0800NE00
		2 (revestido)	003N0063
		3	003N0079
	F0 00	2	003N0062
	+50 → +90	3	003N0089
	0 → +30	2	003N0066
Carga de masa - sensor Ø 9,5 × 190 mm	+25 → +65	2	003N0091
		5	003N0068

Accesorios

	Descripción	Descripción	Código
	Sensor de inmersión	Latón para sensor Ø 18 G ³ / ₄	003N0050
	máx. presión 25 bar L = 220 mm	Latón para sensor Ø 18 mm ³ / ₄ - 14 NPT	003N0051
	L = 220 IIIIII	18/8 acero¹) para sensor Ø 18 G ³/₄	003N0192
RFT-	Sensor de inmersión máx. presión 25 bar	Latón para sensor Ø 9,5 G 1/2	017-4367
	L = 182 mm	18/8 acero1) para sensor Ø 9,5 G 1/2	003N0196
	Soporte de montaje	Para AVTA	003N0388
OD in some summing	Compuesto termoconductivo	Tubo 5 gramos 0,8 kg	041E0110 041E0111
	1 diafragma de nitrilo para aceite mineral	Para AVTA 10/15 Para AVTA 20 Para AVTA 25	003N0445 003N0446 003N0447
555 96 00 69 (())	Empaquetadura del tubo capilar	G ¹ / ₂ G ³ / ₄ ³ / ₄ -14 NPT	017-4220 003N0155 003N0056
O	2 juntas tóricas 2 diafragmas Cono de la válvula	Para AVTA 10/15 Para AVTA 20 Para AVTA 25	003N400600 003N400700 003N400800

¹⁾ W1.4301

Accesorios para AVTA, versión DZR

Conectores roscados

Contenido del set	DN	Código
2 uniones de tuerca,	15	003N5070
2 machos y	20	003N5071
2 juntas	25	003N5072

Conectores de soldadura

Contenido del set	DN	Código
2 uniones de tuerca,	15	003N5090
2 machos y	20	003N5091
2 juntas	25	003N5092

Tamaño

Cuando se seleccionan válvulas termostáticas por su tamaño, lo más importante es asegurar que la válvula pueda proporcionar la cantidad necesaria de agua de refrigeración en cualquier momento, independientemente de la carga. Por lo tanto, para seleccionar el tamaño adecuado de la válvula conviene saber la cantidad precisa de refrigerante que se necesita. Por otra parte, para evitar el riesgo de una regulación inestable (oscilación), el tamaño de la válvula no debería ser excesivo. El tipo de carga se debe seleccionar teniendo en cuenta la temperatura que hay que mantener y las características de cada tipo, descritas anteriormente.

En general, conviene seleccionar la válvula más pequeña capaz de proporcionar el caudal necesario.

También se recomienda tener en cuenta el rango de temperatura de manera que la temperatura del sensor requerida esté en medio del rango de regulación.

Conviene instalar un termómetro cerca del sensor para ajustar correctamente la válvula.

Tamaño de la válvula

Datos a tener en cuenta cuando se selecciona el tamaño de la válvula:

- Caudal del agua de refrigeración requerido, Q [m³/h]
- Aumento de la temperatura del agua de refrigeración, [Δt] (°C)
- Presión diferencial de la válvula, [Δp] (bar).
 Con la válvula completamente abierta, la presión diferencial debería ser aproximadamente el 50% de la caída total de presión del sistema de refrigeración.

Los diagramas de la página 15 son para facilitar la selección del tamaño de la válvula.

- Fig. 1 Relación entre la cantidad de calor [kW] y la cantidad de agua de refrigeración
- Fig. 2 Gráficos de los valores k
- Fig. 3 Rango de funcionamiento de la válvula
- Fig. 4 Las cantidades de caudal como función de la caída de presión $[\Delta p]$

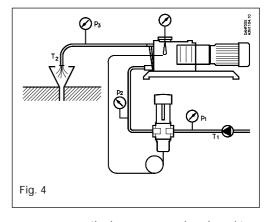
Ejemplo

Seleccionar una válvula de agua de refrigeración para regular la temperatura de una bomba de vacío.

Como se requiere la regulación directa de la temperatura del aceite, una válvula AVTA es apropiada. La posición del sensor es horizontal y se desean dimensiones pequeñas.

Datos proporcionados:

- Refrigeración necesaria con carga completa 10 kW.
- Temperatura del aceite para ser mantenida constante a +45°C
- p, agua de refrigeración = 3 bar
- p_3 de salida = 0 bar
- t


 1 temperatura de agua de refrigeración = +20°C
- t₂ temperatura de salida = +30°C
- Los gráficos de la fig. 1 se pueden utilizar para hallar la cantidad necesaria de agua de refrigeración a
 Δt = 10 °C (+30°C - +20°C) a 0.85 m³/h.
- 2. Los gráficos de la fig. 2 muestran el valor k necesario para 0,85 m³/h con

$$\Delta p = 1.5 \text{ bar} \cdot \left(\frac{3-0}{2}\right) \text{ para } 0.7 \text{ m}^3/\text{h}.$$

 Las columnas de la fig. 3 indican que se pueden utilizar las cuatro válvulas AVTA, pero en la práctica se debería seleccionar una AVTA 10 o 15.

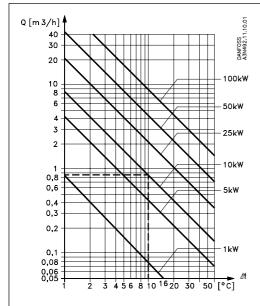
Las consideraciones mencionadas se aplican a los dos modelos de válvulas AVTA y FJVA.

Las condiciones de funcionamiento y otros requisitos del producto en este ejemplo indi-

can que una válvula con carga de adsorción es la elección correcta.

El rango de tempertura $+10 \rightarrow +80^{\circ}\text{C}$ está en orden.

La tabla en la parte superior de la pág. 4 muestra el modelo AVTA 10, cód.. 003N1144, o el AVTA 15, cód. 003N0107. Ambos cumplen los requisitos mencionados.


En muchas aplicaciones, debido a las condiciones de instalación, se recomienda el uso de vainas de sensor.

El apartado "Accesorios" de la pág. 13 indica los códigos de las vainas de sensor para sensores de Ø 9,5 mm de latón y de acero inoxidable: 017-4367 y 003N0196, respectivamente.

14

Tamaño

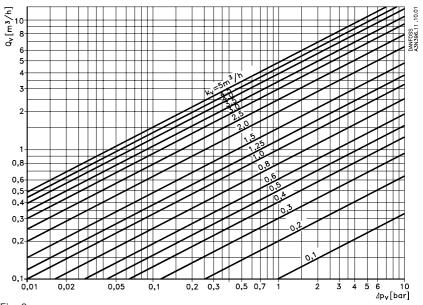


Fig. 1 Calentamiento o refrigeración con agua. Ejemplo: Salida de refrigeración necesaria 10 kW, con Δt = 10 °C. Caudal necesario 0,85 m³/h.

Fig. 2 Relación entre la cantidad de agua y la caída de presión en la válvula. Ejemplo: Caudal de 0,85 m³/h con una caída de presión de 1,5 bar. El valor k_v se convierte en 0,7 m³/h.

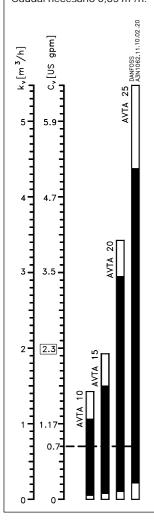


Fig. 3
El nomograma muestra los rangos k_v de la válvula. Los valores k_v siempre se indican en m³/h para el caudal de agua con una caída de presión Dp de 1 bar. La válvula se debe seleccionar de manera que el valor k_v esté en medio del rango de regulación.
Ejemplo: AVTA 10 y 15 son las más adecuadas para un valor k_v de 0,7.

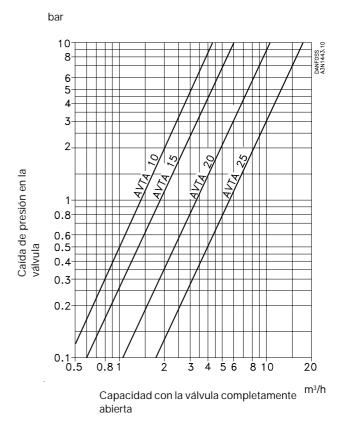


Fig. 4 Cantidad de caudal de la válvula en posición completamente abierta, como función de la caída de presión Dp.

DKACV.PD.500.A4.05 © Danfoss A/S 08-2002 15

Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos o cualquier otro material impreso, reservándose el derecho de alterar sus productos sin previo aviso, incluyéndose los que estén bajo pedido, si estas modificaciones no afectan las características convenidas con el cliente. Todas las marcas comerciales de este material son propiedad de las respectivas compañías. Danfoss y el logotipo Danfoss son marcas comerciales de Danfoss A/S. Reservados todos los derechos.

DK-6000 Kolding Dinamarca